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HOMOTOPY GROUPS AND COHOMOTOPY GROUPS

ON Cηn

Howon Choi

Abstract. A map ηn : Sn+1 → Sn is the generator of πn+1(S
n)

and there exists a mapping cone Cηn = Sn ∪ηn en+2. The focus
of this study is to clearly identify the generators of the homotopy
groups and cohomotopy groups of Cηn for n ≥ 3.

1. Introduction

For any CW-complexes X and Y , the set [X,Y ] consists of all ho-
motopy classes of maps from X to Y . Let Sk be the k-sphere. Then,
[Sk, Y ] is the k-th homotopy group of Y , simply denoted by πk(Y ) and
[X,Sk] is the k-th cohomotopy group(or set) of X, simply denoted by
πk(X). For any f : X → Y , there exists a mapping cone Cf = Y ∪f CX.
Many researchers have conducted studies related to this; [1], [3], [5], [9],
[11].

In this paper, we determine the homotopy groups and cohomotopy
groups of Cηn where ηn : Sn+1 → Sn for n ≥ 3. In [11], πn+2(Cηn)
and πn(Cηn) were calculated but no results for other dimensions have
been provided. In previous studies, the computations were primarily
conducted using algebraic tools, making it difficult to identify the gen-
erators. We clearly distinguish the generators by maps, providing a more
explicit understanding of the structure. The following results have been
proved.

By Theorem 1, we have:
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πk(Cηn)
∼=


0, if k ≤ n− 1,

Z {i∗(ιn)}, if k = n,

0, if k = n+ 1,

Z {αn}, if k = n+ 2.

where π∗(αn) = 2ιn+1 and n ≥ 3.

For n ≥ 5, by Theorem 2, we find that πn+3(Cηn)
∼= Z4{i∗(νn)} ⊕

Z3{i∗(ξ)}.

According to Theorem 3, we have:

πk(Cηn)
∼=


0, if k ≥ n+ 3,

Z {π∗(ιn)}, if k = n+ 2,

0, if k = n+ 1,

Z {βn}, if k = n.

where i∗(βn) = 2ιn+1 and n ≥ 3.

For n ≥ 6, by Theorem 4, we have πn−1(Cηn)
∼= Z4{π∗(νn−1)} ⊕

Z3{π∗(ξn−1)}.

Throughout this note, all (topological) spaces are have homotopy
type based CW-complexes, and all maps and homotopies preserve the
base point. For given spaces X and Y , we denote by [X,Y ] the set of
(based) homotopy classes of maps of X to Y , and by the same letter f
a map f : X → Y and its homotopy class f ∈ [X,Y ]. Also, we denote
usually by

f∗ : [Z,X] → [Z, Y ], g∗ : [Y,Z] → [X,Z]

for any Z. If a group G is generated by a set {a1, a2, ..., an}, then we
denoted the group by G{a1, a2, ..., an}.

2. Preliminaries

Let X be a space. Then we denote by SX the suspension of X and
by SnX the iterated suspension defined by SnX = S(Sn−1X). For a
map f : A → B, there is a mapping cone Cf = B ∪f CA of f . Then we
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have the mapping cone sequence:

A
f // B

i // Cf
π // SA

Sf // SB
Si // SCf

sπ // S2A // · · · .

By [8], the following sequence is exact for any space X:

· · · // [SB,X]
Sf∗
// [SA,X]

π∗
// [Cf , X]

i∗ // [B,X]
f∗
// [A,X].

By [4], if A is an m-connected and B is an n-connected, then we have
the following exact sequence for any Y with dimension at most m+ n:

[Y,A]
f∗ // [Y,B]

i∗ // [Y,Cf ]
π∗ // [Y, SA]

Sf∗ // [Y, SB] // · · · .

By [12], the generators of some homotopy groups of spheres can be
summarized as follows:

i < 0 i = 0 i = 1 i = 2
[Sn+i, Sn] 0 Z Z2 Z2

Generator ιn ηn η2n

for n ≥ 3. And πn+3(S
n) ∼= Z8{νn} ⊕ Z3{ξn} for n ≥ 5.

3. The homotopy groups on Cηn for n ≥ 3.

Let Sk be the k-dimensional sphere. There exists a mapping cone
sequences for ηn : Sn+1 → Sn:

Sn+1 ηn // Sn i // Cηn
π // Sn+2 ηn+1 // Sn+1 Si // · · ·

where Cηn = Sn ∪ηn en+2 and n ≥ 3. In this section, we find generators
of homotopy groups on Cηn .

By [4], we obtain the long exact sequence:

[Sk, Sn+1]
ηn∗ // [Sk, Sn]

i∗ // [Sk, Cηn ]
π∗ // [Sk, Sn+2]

ηn+1∗ // [Sk, Sn+1] // · · ·

for k ≤ 2n− 1.

Case 1. k ≤ n− 1.
We have

0
i∗ // [Sk, Cηn ]

π∗ // 0.

Hence πk(Cηn)
∼= 0 for k ≤ n− 1.



234 Howon Choi

Case 2. k = n.
We have

0
ηn∗ // Z{ιn}

i∗ // [Sn, Cηn ]
π∗ // 0.

Hence πn(Cηn)
∼= Z{i∗(ιn)}.

Case 3. k = n+ 1.
We have

Z{ιn+1}
ηn∗ // Z2{ηn}

i∗ // [Sn+1, Cηn ]
π∗ // 0.

Since ηn∗(ιn+1) = ηn ◦ ιn+1 = ηn and so the i∗ is the trivial homomor-
phism,

0
i∗ // [Sn+1, Cηn ]

π∗ // 0.

Hence πn+1(Cηn)
∼= 0.

Case 4. k = n+ 2.
We have

Z2{ηn+1}
ηn∗ // Z2{η2n}

i∗ // [Sn+2, Cηn ]
π∗ // Z{ιn+2}

ηn+1∗ // Z2{ηn+1} // · · · .

Since ηn∗(ηn+1) = ηn ◦ ηn+1 = η2n, the i∗ is the trivial homomorphism.
Since ηn+1∗(ιn+2) = ηn+1 ◦ ιn+2 = ηn+1, the π∗ is an injective. It implies
that

0
i∗ // [Sn+2, Cηn ]

π∗ // Z{ιn+2}
ηn+1∗ // Z2{ηn+1} // 0.

Hence πn+2(Cηn)
∼= Z{αn} such that π∗(αn) = 2ιn+1.

We can prove the following theorem according to cases 1, 2, 3, and 4.

Theorem 1.

πk(Cηn)
∼=


0, if k ≤ n− 1,

Z {i∗(ιn)}, if k = n,

0, if k = n+ 1,

Z {αn}, if k = n+ 2.

where π∗(αn) = 2ιn+1 and n ≥ 3.

Theorem 2. For n ≥ 5,

πn+3(Cηn)
∼= Z4{i∗(νn)} ⊕ Z3{i∗(ξ)}
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Proof. By [4], we obtain the long exact sequence:

Z2{η2n+1}
ηn∗ // Z8{νn} ⊕ Z3{ξn}

i∗ // [Sn+3, Cηn ]
π∗ // Z2{ηn+2}

ηn+1∗ // Z2{η2n+1} // · · ·

Since ηn∗(η
2
n+1) = ηn◦η2n+1 = η3n, η

3
n = 4νn by [12]. Since ηn+1∗(ηn+2) =

ηn+1 ◦ ηn+2 = η2n+1, the π∗ is the trivial homomorphism. By the exact-
ness, we have

0
ηn∗ // Z4 ⊕ Z3

i∗ // [Sn+3, Cηn ]
π∗ // 0

Hence πn+3(Cηn)
∼= Z4{i∗(νn)} ⊕ Z3{i∗(ξn)}.

4. The co-homotopy groups on Cηn for n ≥ 3.

By [8], we obtain the long exact sequence:

· · · // [Sn+1, Sk]
η∗n+1 // [Sn+2, Sk]

π∗
// [Cηn , S

k]
i∗ // [Sn, Sk]

η∗n // [Sn+1, Sk].

Case 1. k ≥ n+ 3.
We have

· · · // 0
η∗n+1 // 0

π∗
// [Cηn , S

k]
i∗ // 0

η∗n // 0.

Hence πk(Cηn)
∼= 0 for k ≥ n+ 3.

Case 2. k = n+ 2.
We have

· · · // 0
η∗n+1 // Z{ιn+2}

π∗
// [Cηn , S

n+2]
i∗ // 0

η∗n // 0.

Hence πn+2(Cηn)
∼= Z{π∗(ιn+2)}.

Case 3. k = n+ 1.
We have

· · · // Z{ιn+1}
η∗n+1 // Z2{ηn+1}

π∗
// [Cηn , S

n+1]
i∗ // 0.

Since η∗n+1(ιn+1) = ηn+1, the π
∗ is the trivial homomorphism. It implies

that

0
π∗
// [Cηn , S

n+1]
i∗ // 0.

Hence πn+1(Cηn)
∼= 0.
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Case 4. k = n.
We have

· · · // Z2{ηn}
η∗n+1 // Z2{η2n}

π∗
// [Cηn , S

n]
i∗ // Z{ιn}

η∗n // Z2{ηn}.

Since η∗n+1(ηn) = η2n, the π∗ is the trivial homomorphism. It implies
that

0
π∗
// [Cηn , S

n]
i∗ // Z{ιn}

η∗n // Z2{ηn}.

Since η∗n(ιn) = ηn, the η∗n is the surjective homomorphism.
Hence πn+1(Cηn)

∼= Z{βn} such that i∗(βn) = 2ιn.

We can prove the following theorem according to cases 1, 2, 3, and 4.

Theorem 3.

πk(Cηn)
∼=


0, if k ≥ n+ 3,

Z {π∗(ιn)}, if k = n+ 2,

0, if k = n+ 1,

Z {βn}, if k = n.

where i∗(βn) = 2ιn+1 and n ≥ 3.

Theorem 4. For n ≥ 6,

πn−1(Cηn)
∼= Z4{π∗(νn−1)} ⊕ Z3{π∗(ξn−1)}

Proof. By [8], we obtain the long exact sequence:

Z2{η2n−1}
η∗n+1 // Z8{νn−1} ⊕ Z3{ξn−1}

π∗
// [Cηn , S

n−1]
i∗ // Z2{ηn−1}

η∗n // Z2{η2n−1}.

By the exactness, we have

0
η∗n+1 // Z4 ⊕ Z3

π∗
// [Cηn , S

n−1]
i∗ // 0.

Hence πn−1(Cηn)
∼= Z4{π∗(νn−1)} ⊕ Z3{π∗(ξn−1)}.
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